gs2 notes

T. Tatsuno

March 22, 2006

1 Open Questions

List of my questions.

- 1. I think add_nonlinear_terms only evaluates Poisson bracket and puts it in g1. Where is it added? → It's added at set_source in dist_ fn.f90 by Euler or 2nd order Adams-Bashforth scheme, but why is the factor 0.5 multiplied? → Is this factor 0.5 because set_source < get_ source_term < invert_rhs < timeadv is called twice in advance_ implicit?
- 2. What does istep_last do in add_nl? \rightarrow It's for the check if time step has advanced from the last call.
- 3. Can load_kx_apar in nonlinear_terms.f90 be simplified if vpa(*,2,*) = -vpa(*,1,*)? So as load_ky_apar.
- 4. Is it okay to use the same timeadv for the first and the second implicit time stepping in advance_implicit? I'm assuming it uses the scheme described in Kotschenreuther paper Sec.3.5.
- 5. At invert_rhs_1 in dist_fn.f90, the 'homogeneous' solution g1 is obtained only by multiplying r. Is g1 at step n supposed to be zero? \rightarrow yes they are. This is what the 'homogeneous' solution mean in Kotschenreuther paper.
- 6. At invert_rhs_1 in dist_fn.f90, is it okay to use r and ainv defined for $\hat{v}_{\parallel} > 0$ in the calculation of gnew for vpar < 0?

- 7. In get_source_term, there appear a lot of cross terms like vpac * $[J_0(ig) + J_0(ig+1)]$ or something like that. Is this what is meant as a numerical scheme?
- 8. On the one hand, density, temperature, and their gradients are basically field quantities. And on the other hand, spec%dens, spec%temp, spec%fprim and spec%tprim are just real values. How can I understand it? Are they just normalization factors and don't evolve in time?
- 9. In get_source_term?, when you use finite bakdif, do you not need to implement it in the source term either?
- 10. Do we need to convert total into 1d array work in integrate_species before allreduce? Can we use reshape function rather than multiple do-loops?
- 11. Can I remove some of the logical variable alloc by using if (.not.allocated(...)) ...?
- 12. For nesuper = 1, xsup and wsup can be made correct by setting them unity
- 13. Why gbdrift and gbdrift0? Which is ∇B -drift? Same with cvdrift and cvdrift0?
- 14. What are gds2, gds21, and gds22?
- 15. Can we include an equilibrium flow in distribution function?
- 16. How is g obtained from a given A_{\parallel} profile in recon10.in?
- 17. How is perturbation in A_{\parallel} given in recon10a.in?
- 18. Is collision operator fixed? Can I have the fixed one?
- 19. At init_kt_grids in kt_grids.f90, is it ok to make tnorm optional even if norm_option = bd? Or add error output in case it is missed?
- 20. Is idfit_eq in theta_grid_knobs working?
- 21. Does alloc at allocate_arrays in fields.f90 need save attribute? Same with first of init_integrations in le_grids.f90.
- 22. In dist_fn.f90, adiabatic_option_zero is not used.
- 23. Do variables need **save** attribute when defined in the common area (i.e., before **contains** statement) of each modules?

- 24. Do fapar, faperp, and fphi need default values at read_parameters in run_parameters.f90?
- 25. pitch angle grid: xx(1:ng2) and wx(1:ng2) are the Legendre zeros and weights rescaled to (1,0) and in descending order.

al(1:ng2) =
$$\frac{1}{B_{\text{max}}}(1 - xx(1:ng2)^2)$$
 (1)

$$w_{l}(\theta,\lambda) = 2w_{x}(\lambda)\sqrt{\frac{B(\theta)}{B_{\max}}\frac{\frac{1}{B_{\max}} - \mathtt{al}(\lambda)}{\frac{1}{B(\theta)} - \mathtt{al}(\lambda)}}$$
$$= 2w_{x}(\lambda)\frac{B(\theta)}{B_{\max}}\sqrt{\frac{1-\lambda B_{\max}}{1-\lambda B(\theta)}}$$
(2)

On the other hand, the integral we need is

$$I = B(\theta) \int_{0}^{1/B_{\max}} \frac{1}{\sqrt{1 - \lambda B(\theta)}} d\lambda$$

= $B(\theta) \int_{0}^{1/B_{\max}} \sqrt{\frac{1 - \lambda B_{\max}}{1 - \lambda B(\theta)}} \frac{1}{\sqrt{1 - \lambda B_{\max}}} d\lambda$
= $\frac{2B(\theta)}{B_{\max}} \int_{0}^{1} \sqrt{\frac{1 - \lambda(X)B_{\max}}{1 - \lambda(X)B(\theta)}} dX$ (3)

We are having a weird factor with square root. Is this a quadrature? I mean, if there is additional weight, that has to be removed. Otherwise we have to use a proper function for that weight!? I don't think this can give exponential convergence even if the factor does not have branch point.

I wonder if Chebyshev is better by defining $X = \sqrt{\lambda B(\theta)}$ or anything like that. Does Candy & Waltz use different scheme?

Maybe this is okay. We need to integrate something like

$$I' = B(\theta) \int_0^{1/B_{\max}} \frac{f(\lambda)}{\sqrt{1 - \lambda B(\theta)}} \, d\lambda \tag{4}$$

Then, by regarding the weight unity and taking the factor as part of the integrand by multiplying it with $f(\lambda(X))$, we may use Legendre zeros

and weights. Since weights are always multiplied with the integrand, the code takes care of the multiplication of the factor by multiplying it onto weights instead of $f(\lambda(X))$.

Then, the next question is: Does the branch point matters at x = 1?

- 26. In root finding at setegrid in le_grids.f90, why cheking every other nodes instead of adjacent ones?
- 27. When is xgrid_v used at all?
- 28. There are g*_lo%ulim_proc and g*_lo%ulim_alloc. The definition of ulim_alloc is

ulim_alloc = max(llim_proc,ulim_proc)

Isn't it always same with ulim_proc? Or, can blocksize be zero? If so, shouldn't we use ulim_alloc any time? What is the difference?

- 29. Does the argument of Bessel function only include k_y at init_bessel in dist_fn.f90? Why? Don't need k_x since it has to be $k_{\perp}v_{\perp}/\Omega$?
- 30. What's the meaning of the value upar 0 = 0.436 in recon10a.in?
- 31. logical variable list (in gs2.f90) determines the run type: if the command line argument is '?*.list' (judged at run_type in file_utils.f90) then list = .true.: make multiple runs changing parameters?
- 32. What are lavg and tavg doing at time_message in gs2_reinit.f90?
- 33. Why is cbuff necessary? In parent process, run_name still points arun_name, but in child processes, it points cbuff. cbuff = arun_name only at parent process. arun_name is undefined at child processes.
- 34. What is θ used for ntheta and nperiod? In toroidal or poloidal direction?
- 35. What is alpmhd? It is neither defined at read_parameters in theta_grid_params nor in gs2_template.in file.
- 36. Is itor working? What is it for then?
- 37. Are ∇B and curvature drift same in most cases except when ∇p is large?
- 38. What's the difference between theta and theta0? Why is theta0 2D?
- 39. What are pure and elemental functions?

2 Closed Questions

1. akx_out is the wave number used in most of the output including the one in gs2_io.f90, but it is defined in kt_grids.mod as

$$akx_out = akx/\sqrt{2}$$
 (5)

which I guess corresponds to the conversion of the wave number in BD normalization to MTK one. On the other hand, in the output file recon10?.out.nc, we see that kx(1) = 1/6, which has to be the value of akx! Why? \rightarrow You are missing the multiplication of $\sqrt{2}$ on wave numbers at get_grids in kt_grids.mod. This converts all akx in the code into MTK normalization.

- 2. Why ostride and odist are both zero at transform_x5d in gs2_ transforms.f90? \rightarrow since xf_ and xb_fft do in-place transforms.
- 3. What is ainv in dist_fn.f90? \rightarrow inverse of the coefficient of f_{i+1}^{n+1} in Kotschenreuther paper (14).
- 4. In the beginning of fields_explicit.f90, it says NOT UP TO DATE ... DO NOT USE. Should we maintain it? \rightarrow maybe not.

Some notes.

- 1. theta_grid.f90 consists of six modules of theta_grid, theta_grid_params, theta_grid_gridgen, theta_grid_salpha, theta_grid_eik, and theta_grid_file.
- 2. DOS mode input file doesn't work with ingen and probably with gs2, either.

3 Modifications I want to make

- 1. Can get_unused_unit in file_utils.f90 be simplified by opened specifier?
- 2. Can I use spread for defining theta0 at range_get_grids in kt_grids.f90?
- 3. Can I replace multiple do loops by forall? \rightarrow don't do that. forall statement is still inefficient.
- 4. At efitin in eeq.f90, inquire existance of eqfile

5. Is it difficult to use different energy grids for different species? We may not be able to make simulation with vastly different temperatures between species.

4 Variables

By default, I don't mean the value in the input file, but that used in the actual calculation.

scalars			
name	type	default value	description
nx	int	0	number of grid points in x real space
ny	int	0	number of grid points in y real space
ntheta0	int	2*((nx-1)/3)+1	number of valid modes in x
naky	int	(ny-1)/3+1	half number of valid modes in y
ntgrid	int		half number of grid point in z (finite difference)?
negrid	int	10	total number of energy grid
ngauss	int	5	half number of λ grid points
ng2	int	ngauss $*2$	
nlambda	int	${\tt ng2+nbset}~({\tt eps}>0)$	number of grid points in $\lambda = \mu/E$
		ng2 (otherwise)	
уO	real	2.0	box length in y by multiple of 2π
ly	real	$2\pi*y0$	box length in y
rtwist	real	1.0	l_y/l_x aspect ratio
lmax	int	nlambda - 1 (eps > 0.)	maximum value of λ ?
		nlambda (otherwise)	
shat	real		$\hat{s} = \frac{r}{q} \frac{dq}{dr}$
igomega	int	0	ig to output in 2d

1d arrays

name	type	dim	description
akx	real	ntheta0	\hat{k}_{xM} wavenumbers in x (reversed in the middle)
aky	real	naky	\hat{k}_{yM} wavenumbers in y in MTK normalization
al	real	nlambda	pitch-angle grid $\lambda = \mu/E$ (weights: wl in 2d)

2d arrays

name	type	dim	description
theta0	real	ntheta0 imes naky	akx(i)/(aky(2:)*shat), theta0(:,1) = 0. ??
akr	real	$ntg imes \mathtt{ntheta0}$	<pre>akx(it)*sqrt(abs(gds22(:)))/abs(shat) ??</pre>
е	real	negrid imes nspec	energy grid
W	real	negrid imes nspec	energy weights
wl	real	ntg imes nlambda	pitch-angle weights
vperp2	real	$ntg\times \texttt{glo}$	\check{v}_{\perp}^2
anon	real	negrid imes nspec	equals unity unless <pre>slowing_down_species</pre>
aj0	real	$ntg\times \texttt{glo}$	Bessel function J_0
aj1	real	$ntg imes {glo}$	Bessel function J_1
where $ntg = -ntgrid:ntgrid$.			

3d arrays

name	type	dim	description
vpa	real	$ntg imes 2 imes { m glo}$	\check{v}_{\parallel} or zero (for non-passing zone)
phi	complex	$ntg imes \mathtt{ntheta0} imes \mathtt{naky}$	electrostatic field
apar	complex	$ntg imes \mathtt{ntheta0} imes \mathtt{naky}$	A_{\parallel}
aperp	complex	ntg imesntheta $0 imes$ naky	A_{\perp}
g	complex	$ntg \times 2 \times \texttt{glo}$	distribution function

5 Equations found

When one chooses s-alpha equilibrium option, toroidal magnetic field profile bmag is defined at salpha_get_grids as

$\mathtt{bmag} = 1 - \epsilon \cos \theta - \alpha_1 \cos(3\theta)$	for model_option = 'alpha1'	(6)
$\texttt{bmag} = 1 - \epsilon \cos \theta$	for model_option = 'b2'	(7)
$\mathtt{bmag} = \frac{1}{1 + \epsilon \cos \theta}$	otherwise	(8)

where $\epsilon(= eps) = r/R$, r and R denote minor radius of interest and major radius, respectively. Thus θ is found to be poloidal angle.

init_vpar

For untrapped particle

$$vpa(ig) = \sigma \sqrt{E(1 - \lambda B(ig))}$$
(9)

$$vpac(ig) = \frac{1}{2}[vpa(ig) + vpa(ig+1)]$$
(10)

(11)

and for nonpassing zone

$$\mathsf{vpa} = 0 \tag{12}$$

$$vpac = \sigma \tag{13}$$

where $\sigma = \pm 1$ denotes the coordinate for the sign of v_{\parallel} . And then **vpar** is defined by

$$vpar(ig) = \frac{Z}{\sqrt{mT}} tunits \frac{\Delta t}{2\Delta \theta} \frac{1}{2} [gradpar(ig) + gradpar(ig+1)] * vpac(ig)$$
(14)

where gradpar(:) = kp in salpha option.

and for $k_y \neq 0$,

$$\mathsf{wdrift} = \left[(v_{\mathrm{curv}} + \theta_0 v_{\mathrm{curv0}})(1 - \lambda B(\theta)) + (v_{\nabla B} + \theta_0 v_{\nabla B0}) \frac{1}{2} \lambda B(\theta) \right] E * \mathsf{delt} * \mathsf{wunits}$$
(17)

where from adjust_time_norm in run_parameters.f90,

wunits =
$$\begin{cases} 1 & (wstar_units = .true.) \\ k_y/2 & (wstar_units = .false.) \end{cases}$$
 (18)

$$\texttt{tunits} = \begin{cases} 2/k_y & (\texttt{wstar_units} = .\texttt{true}. \& k_y \neq 0) \\ 1 & (\texttt{wstar_units} = .\texttt{false}.) \end{cases}$$
(19)

$$\texttt{funits} = \begin{cases} 1 & (\texttt{wstar_units} = .\texttt{true.}) \\ \texttt{tnorm} & (\texttt{wstar_units} = .\texttt{false.}) \end{cases}$$
(20)

woutunits =
$$\begin{cases} k_y/\sqrt{2} & (wstar_units = .true.) \\ tnorm & (wstar_units = .false.) \end{cases}$$
 (21)

init_wstar

$$wstar = delt * wunits * [fprim + tprim * (E - 1.5)]$$
(22)

init_bessel

$$kperp2 = \begin{cases} \frac{gds22}{(shat)^2}k_x^2 & (k_y = 0) \\ (gds2 + 2\theta_0 gds21 + \theta_0^2 gds22) k_y^2 & (k_y \neq 0) \end{cases}$$
(23)

with the argument

$$\arg = \frac{\sqrt{mT}}{|Z|} \sqrt{\text{kperp2}\frac{\lambda E}{B}},$$
(24)

we define the Bessel functions

$$aj0 = J_0(arg), \quad aj1 = J_1(arg) \tag{25}$$

with a formula taken from Abramovitz & Stegun (page 369, 9.4). By the way, in recon10a.in,

$$gds2 = 1, \quad gds21 = -(shat)^2\theta, \quad gds22 = (shat)^2, \tag{26}$$

and

$$\theta_0 = \begin{cases} \frac{k_x}{k_y \text{shat}} & (k_y \neq 0) \\ 0 & (k_y = 0) \end{cases} .$$
(27)

Therefore,

$$kperp2 = \begin{cases} k_x^2 & (k_y = 0) \\ k_x^2 + k_y^2 - 2k_x k_y \theta * \text{shat} & (k_y \neq 0) \end{cases}$$
(28)

shat is small (= 10⁻⁶), but kperp2 is not exactly k_{\perp}^2 for $\theta \neq 0$. Is this okay? [init_invert_rhs]

$$\mathtt{ainv}(ntg, \mathtt{glo}) = \frac{1}{1 + \mathtt{bd} + (1 - \mathtt{fexp})\frac{T}{Z}[i\mathtt{wd}(1 + \mathtt{bd}) + 2\mathtt{vp}]}$$
(29)

$$\sim \left[1 + (1 - f_{\exp})\Delta t \left(i\omega_{\rm d} + \frac{2\hat{v}_{\parallel}}{\Delta\theta}\right)\right]^{-1}$$
(30)

= (coeff. of
$$f_{i+1}^{n+1}$$
 in the lhs)⁻¹ = (D_4 plus bd factor)⁻¹
(31)

$$\mathbf{r}(ntg, \mathtt{glo}) = \frac{1 - \mathtt{bd} + (1 - \mathtt{fexp})\frac{T}{Z}[i\mathtt{wd}(1 - \mathtt{bd}) - 2\mathtt{vp}]}{1 + \mathtt{bd} + (1 - \mathtt{fexp})\frac{T}{Z}[i\mathtt{wd}(1 + \mathtt{bd}) + 2\mathtt{vp}]}$$
(32)

$$= \left[1 + (1 - f_{\exp})\Delta t \left(i\omega_{\rm d} - \frac{2\hat{v}_{\parallel}}{\Delta\theta}\right)\right] * \text{ainv}$$
(33)

= (coeff. of f_i^{n+1} in the lhs) * ainv = (D_3 plus bd factor) * ainv (34)

$$a(ntg, glo) = 1 + bd + fexp \frac{T}{Z} [-iwd(1 + bd) - 2vp]$$
(35)

$$= 1 - f_{\exp}\Delta t \left(i\omega_{\rm d} + \frac{2}{\Delta\theta} \hat{v}_{\parallel} \right) ? (\text{haven't checked } \omega_{\rm d} \text{ factor})$$
(36)

$$= D_2 \text{ (coeff. of } f_i^{n+1} \text{ term) plus bd factor}$$
(37)

$$b(ntg, glo) = 1 - bd + fexp\frac{T}{Z} \left[-iwd(1 - bd) + 2vp\right]$$
(38)

$$= 1 - f_{\exp}\Delta t \left(i\omega_{\rm d} - \frac{2}{\Delta\theta} \hat{v}_{\parallel} \right) ? (\text{haven't checked } \omega_{\rm d} \text{ factor})$$
(39)

 $= D_1 \text{ (coeff. of } f_i^n \text{ term) plus bd factor}$ (40)

where wd = wdrift (= 0 in reconnection) and vp = vpar(ntg, 1, glo). Note that they are all defined for positive v_{\parallel} .

fexp is a complex number. What's the meaning of the imaginary part? The meaning of the real part of fexp and bd (= bakdif) is explained later (in get_source_term?).

 ${\tt init_fieldeq}$

$$gamtot = \sum_{s} \frac{nZ_s^2}{T_s} \int \int (1 - J_0^2) * \operatorname{anon} d\lambda \, dE + \text{kperp2} * \text{poisfac} \quad (41)$$

$$gamtot1 = \sum_{s} nZ_{s} \int \int 2v_{\perp}^{2} J_{0} J_{1} * \operatorname{anon} d\lambda \, dE$$
(42)

$$gamtot2 = \sum_{s} nT \int \int 2v_{\perp}^{4} J_{1}^{2} * \operatorname{anon} d\lambda \, dE$$
(43)

Of course these integrations are done with proper weights and Jacobians described elsewhere.

invert_rhs

In dist_fn.f90. Add source term

$$\texttt{sourcefac} = \begin{cases} s_0 \exp[(-i\omega_0 + \gamma_0)t] & (t > t_0) \\ \frac{1}{2} \left(1 - \cos\frac{\pi t}{t_0}\right) \exp[(-i\omega_0 + \gamma_0)t] & (t \le t_0) \end{cases}, \quad (44)$$

where s_0 (source0), ω_0 (omega0), γ_0 (gamma0), and t_0 (t0) are given parameters specified in source_knobs.

 $\boxed{\texttt{get_source_term}}$ Writing $f_{\phi} = \texttt{fphi}, f_{exp} = \texttt{fexp} \ (= 1 - \delta \text{ in Kotschenreuther paper})$

$$phigavg = f_{\phi}J_0 \left[f_{\exp}\phi^n + (1 - f_{\exp})\phi^{n+1} \right] + f_{A_{\perp}} \frac{T}{Z} v_{\perp}^2 J_1 \left[f_{\exp}A_{\perp}^n + (1 - f_{\exp})A_{\perp}^{n+1} \right]$$
(45)

$$apargavg = f_{A_{\parallel}} J_0 \left[f_{\exp} A_{\parallel}^n + (1 - f_{\exp}) A_{\parallel}^{n+1} \right]$$

$$\tag{46}$$

$$ufac = 2 * uprim + \frac{\sqrt{\pi}}{4} E^{3/2} * uprim2$$
(47)

The following is for reconnection problem:

$$\operatorname{source(ig)} = -2\operatorname{vpar(ig)}\phi_m - \frac{Z}{\sqrt{mT}}\operatorname{vpac(ig)}\frac{J_0(\operatorname{ig}) + J_0(\operatorname{ig}+1)}{2}A_{\parallel m}$$
(48)

where

$$\phi_m = \text{phigavg}(\text{ig} + 1) - \text{phigavg}(\text{ig}) \sim \Delta \theta \frac{\partial (J_0 \phi)}{\partial \theta}$$
(49)

$$A_{\parallel m} = A_{\parallel}^{n+1}(\mathbf{ig}+1) + A_{\parallel}^{n+1}(\mathbf{ig}) - A_{\parallel}^{n}(\mathbf{ig}+1) - A_{\parallel}^{n}(\mathbf{ig})$$

$$\sim 2\Delta t \frac{\partial A_{\parallel}}{\partial t}$$
(50)

$$phigavg = J_0(ig) \left[f_{exp} \phi^n(ig) + (1 - f_{exp}) \phi^{n+1}(ig) \right]$$
(51)

$$\operatorname{vpar}(\operatorname{ig}) = \frac{Z}{\sqrt{mT}} \frac{\Delta t}{\Delta \theta} \operatorname{kp} * \frac{\check{v}_{\parallel}(\operatorname{ig}) + \check{v}_{\parallel}(\operatorname{ig}+1)}{2} \sim \frac{\hat{Z}}{\hat{T}} \frac{\Delta t}{\Delta \theta} \hat{v}_{\parallel}$$
(52)

$$\operatorname{vpac}(\operatorname{ig}) = \frac{\check{v}_{\parallel}(\operatorname{ig}) + \check{v}_{\parallel}(\operatorname{ig} + 1)}{2}$$
(53)

Thus,

source(ig)
$$\sim -\frac{\hat{Z}}{\hat{T}}\hat{v}_{\parallel} \left[\frac{\partial(J_0\phi)}{\partial\theta} + J_0\frac{\partial A_{\parallel}}{\partial t}\right](2\Delta t)$$
 (54)

where ϕ and A_{\parallel} are evaluated from both time steps of n and n + 1. This is the expression you get at set_source. Is the sign of the first term in [...] okay??

Moreover, if nonlin = .true., then add nonlinear terms

$$source = (54) + \frac{1}{2} \frac{delt}{tnorm} \times (nonlinear terms),$$
 (55)

in Euler scheme at the first time step and in second order Adams-Bashforth scheme for the rest. tnorm = $\sqrt{2}$ in reconnection runs, and delt is multiplied by tnorm in init_run_parameters. So the factor delt/tnorm corresponds to the real delt specified in the input file. The Δt (= delt) in the linear terms is $\sqrt{2}$ times larger than that. The precise form of the nonlinear terms is described in add_nl.

Next, we go back to get_source_term and around the place where Do matrix multiplications... For $\sigma = 1$

$$\mathbf{b}(ig, iglo) * g(ig, 1, iglo) + \mathbf{a}(ig, iglo) * g(ig+1, 1, iglo)$$
(56)

is added to source(ig), which corresponds to the g^n terms arising from the finite difference form of the lhs:

$$\frac{\partial f}{\partial t} + i\omega_{\rm d}f + \hat{v}_{\parallel}\frac{\partial f}{\partial \theta} \sim \frac{1}{2\Delta t} \left[(f_i^{n+1} + f_{i+1}^{n+1}) - (f_i^n + f_{i+1}^n) \right] \\ + \frac{i\omega_{\rm d}}{2} \left[(1 - f_{\rm exp})(f_i^{n+1} + f_{i+1}^{n+1}) + f_{\rm exp}(f_i^n + f_{i+1}^n) \right] \\ + \frac{\hat{v}_{\parallel}}{\Delta \theta} \left[(1 - f_{\rm exp})(f_{i+1}^{n+1} - f_i^{n+1}) + f_{\rm exp}(f_{i+1}^n - f_i^n) \right]$$
(57)

where $\omega_{\rm d} = 0$ in the reconnection problem. For $\sigma = -1$, the sign change of \hat{v}_{\parallel} is taken care of by multiplying *a* and *b* oppositely on g(ig) and g(ig+1), respectively, because the definition of **a** and **b** uses vpar(ntg, 1, glo) which is the positive part of \hat{v}_{\parallel} .

Okay, let's think about **bakdif** now. It is introduced in order to make $\hat{v}_{\parallel}\partial_{\theta}f$ term an upwind difference scheme. As is described in (57), everything is evaluated at grid point i+1/2 in θ . Instead of changing the finite differencing of $\partial_{\theta}f$, we shift the grid point for other terms to be evaluated a little bit forward. Then, the scheme is going to be upwind finite difference.

Let's work on the terms appearing in (57), and we write $\beta = \text{bakdif}$ for simplicity. Any term evaluated at i + 1/2 is expressed as follows:

$$f_{i+1/2} = \frac{1}{2}(f_{i+1} + f_i).$$
(58)

By shifting it forward, we may write it as

$$f_{i+(1+\beta)/2} = \frac{1}{2} [(1+\beta)f_{i+1} + (1-\beta)f_i],$$
(59)

where $0 \le \beta \le 1$ and $\beta = 0$ corresponds to second order centered difference scheme (may β be larger than unity?).

Thus, for the terms in (57), they are finite differenced as

$$\begin{pmatrix} \frac{\partial f}{\partial t} + i\omega_{\rm d}f \end{pmatrix}_{i+(1+\beta)/2} + \left(\hat{v}_{\parallel}\frac{\partial f}{\partial \theta}\right)_{i+1/2} \\ \sim \frac{1}{2} \left[(1+\beta)\frac{f_{i+1}^{n+1} - f_{i+1}^n}{\Delta t} + (1-\beta)\frac{f_i^{n+1} - f_i^n}{\Delta t} \right] \\ + \frac{i\omega_{\rm d}}{2} \left\{ (1-f_{\rm exp}) \left[(1+\beta)f_{i+1}^{n+1} + (1-\beta)f_i^{n+1} \right] + f_{\rm exp} \left[(1+\beta)f_{i+1}^n + (1-\beta)f_i^n \right] \right\} \\ + \frac{\hat{v}_{\parallel}}{\Delta\theta} \left[(1-f_{\rm exp})(f_{i+1}^{n+1} - f_i^{n+1}) + f_{\rm exp}(f_{i+1}^n - f_i^n) \right] \\ = \frac{1}{2\Delta t} \left[\frac{1}{ainv} f_{i+1}^{n+1} + \frac{\mathbf{r}}{ainv} f_i^{n+1} - \mathbf{a}f_{i+1}^n - \mathbf{b}f_i^n \right] .$$

$$(60)$$

Here comes the question. When you use finite **bakdif**, do you not need to implement it in the source term either?

invert_rhs_1

Is it okay to use **r** and **ainv** defined for $\hat{v}_{\parallel} > 0$ in the calculation of **gnew** for vpar < 0?

getan

This is in dist_fn.f90.

$$\operatorname{antot} = \sum_{s} nZ \int \int J_0 * \operatorname{gnew} d\lambda \, dE \tag{61}$$

antota =
$$\sum_{s} 2 * \text{beta} * nZ \sqrt{\frac{T}{m}} \int \int J_0 \check{v}_{\parallel} * \text{gnew} \, d\lambda \, dE$$

$$\sum_{s} 2 * \text{beta} * nZ \sqrt{\frac{T}{m}} \int \int J_0 \check{v}_{\parallel} * \text{gnew} \, d\lambda \, dE \qquad (62)$$

$$= \sum_{s} 2 * \text{beta} * nZ \int \int J_0 \hat{v}_{\parallel} * \text{gnew} \, d\lambda \, dE \tag{62}$$

$$\mathtt{antotp} = \sum_{s} nT \int \int J_1 \check{v}_\perp^2 * \mathtt{gnew} \, d\lambda \, dE \tag{63}$$

getfieldeq1

add_nl

If the time step (istep) is advanced from the last call (istep_last),

$$g2 = g1 \tag{64}$$

$$g\mathbf{1} = ik_x \left[J_0 \left(f_\phi \phi - \hat{v}_{\parallel} f_{A_{\parallel}} A_{\parallel}^n \right) + \frac{2m}{Z} J_1 \hat{v}_{\perp}^2 f_{A_{\perp}} A_{\perp}^n \right]$$
(65)

$$ba = \mathcal{F}(g1) \tag{66}$$

$$g\mathbf{1} = \frac{Z}{T} \left[ik_y \left(J_0 f_\phi \phi + \frac{2m}{Z} J_1 \hat{v}_\perp^2 f_{A_\perp} A_\perp^n \right) \right] + ik_y g \tag{67}$$

$$gb = \mathcal{F}(g1) \tag{68}$$

(69)

bracket = ba * gb * kxfac

$$g\mathbf{1} = ik_y \left[J_0 \left(f_\phi \phi - \hat{v}_{\parallel} f_{A_{\parallel}} A_{\parallel}^n \right) + \frac{2m}{Z} J_1 \hat{v}_{\perp}^2 f_{A_{\perp}} A_{\perp}^n \right]$$
(70)

$$ba = \mathcal{F}(g1) \tag{71}$$

$$g\mathbf{1} = \frac{Z}{T} \left[ik_x \left(J_0 f_\phi \phi + \frac{2m}{Z} J_1 \hat{v}_\perp^2 f_{A_\perp} A_\perp^n \right) \right] + ik_x g \tag{72}$$

$$gb = \mathcal{F}(g1) \tag{73}$$

$$bracket = bracket - ba * gb * kxfac$$
 (74)

$$g1 = \mathcal{F}(\texttt{bracket}) \tag{75}$$

where kxfac = 1 when equilibrium_option = s-alpha. Why do (Z/T) [...] terms appear in (67) and (72)?

6 Normalization

Energy is normalized by

$$\check{E}_{\rm s} = \frac{E_{\rm s}}{m_{\rm s} v_{\rm ts}^2/2} \tag{76}$$

where

$$v_{\rm ts} = \begin{cases} \sqrt{2T_{\rm s}/m_{\rm s}} & \text{norm_option} = \text{with_root_2} \\ \sqrt{T_{\rm s}/m_{\rm s}} & \text{norm_option} = \text{no_root_2} \end{cases} .$$
(77)

Note that energy normalization is done in terms of the thermal velocity for each specy.

In the following, we first write everything in the definition of v_t with $\sqrt{2}$, and in case which is different without $\sqrt{2}$, it's shown in the bracket. The energy in relation to temperature

$$\check{E}_{\rm s} = \frac{E_{\rm s}}{T_{\rm s}} \quad \left(\check{E}_{\rm s} = \frac{2E_{\rm s}}{T_{\rm s}}\right) \tag{78}$$

and in the velocity

$$\check{E}_{\rm s} = \check{v}_{\rm s}^2 \tag{79}$$

Is the energy variable normalized with respect to the temperature for each species, while k_{\perp} is normalized in terms of a representative v_{t*} for which we choose T = 1? Then, the argument of the Bessel function can be understood:

$$\arg_{s} = \frac{\sqrt{\hat{m}_{s}\hat{T}_{s}}}{Z_{s}} \frac{\hat{k}_{\perp}\check{v}_{\perp s}}{\hat{B}}$$

$$= \frac{\sqrt{\hat{m}_{s}\hat{T}_{s}}}{Z_{s}} \frac{k_{\perp}\rho_{*}v_{\perp s}/v_{ts}}{B/B_{*}}$$

$$= \frac{\sqrt{m_{s}T_{s}}}{q_{s}} \frac{q_{*}}{\sqrt{m_{*}T_{*}}} \frac{k_{\perp}v_{\perp s}}{B/B_{*}} \frac{v_{t*}}{\Omega_{*}} \sqrt{\frac{m_{s}}{2T_{s}}}$$

$$= \frac{k_{\perp}v_{\perp s}}{\Omega_{s}}$$
(80)

On the other hand, they cancel in the pitch-angle variable λ

$$\check{\lambda} = \frac{\check{v}_{\perp}^2}{\check{v}^2 \hat{B}} = \frac{\hat{v}_{\perp}^2}{\hat{v}^2 \hat{B}} = \hat{\lambda}$$
(81)

Here is a formula to transfer \hat{v} to \check{v} :

$$\hat{v}_{\rm s} = \check{v}_{\rm s} \sqrt{\frac{\hat{T}_{\rm s}}{\hat{m}_{\rm s}}} \tag{82}$$

7 collisions

Rough sketch is given in Greg's and David's memo. Here is shown the expression of the function H_{ee} appearing in Greg's note.

Define the function

$$H_{ee}(E) = \frac{1}{\sqrt{\pi E}} e^{-E} + \left(1 - \frac{1}{2E}\right) \operatorname{erf}\left(\sqrt{E}\right)$$
(83)

with this $erf(\cdot)$ part given in an awful polynomial including 16-th power in gs2. I don't know the source of that formula.

For electrons,

$$vnew = \frac{vnewk}{\check{v}^3} (zeff + H_{ee}) * 0.5 * tunits$$
(84)

where vnewk and zeff are the input variables in species_parameters and parameters namelists, respectively. zeff term represents electron-ion collision under an approximation of replacing ion distribution function by a delta-function valid when $v_{\text{th},i} \ll v_{\text{th},e}$. H_{ee} term represents the like-particle collisions with a Maxwellian background. For ions, zeff term is omitted. When const_v flag in collisions_knobs is on, the whole vnew is evaluated for the thermal velocity ($\check{v} = 1$) for both electrons and ions. There is another array vnew4 in collisions.f90, but it is unused.

8 Ascii output files

Everything turned on by the flag write_ascii.

(runname).moments Controlled by write_final_moments and each column means

$$heta$$
 k_y k_x ntot dens u_{\parallel} T_{\parallel} T_{\perp} $heta- heta_0$ is

middle 5 normalized by phi0

(runname).mom2 Controlled by write_final_moments and each column means

heta k_y k_x ntot dens u_{\parallel} T_{\parallel} T_{\perp} $heta- heta_0$ is

(runname).fields Controlled by write_final_fields and each column means

$$\theta \quad k_y \quad k_x \quad \phi_{\mathrm{r}} \quad \phi_{\mathrm{i}} \quad A_{\parallel,\mathrm{r}} \quad A_{\parallel,\mathrm{i}} \quad A_{\perp,\mathrm{r}} \quad A_{\perp,\mathrm{i}} \quad \theta - \theta_0 \quad |\phi|$$

9 Netcdf file and gs2.pro

phi2 in (runname).out is a volume average.

phi0, apar0, aperp0 written out in the subroutine nc_loop are all 3D arrays including time at the slice with $ig = igomega \ (\theta = igomega * 2\pi)$ where igomega is an input variable in gs2_diagnostics_knobs namelist.

phi and apar are 3D arrays of the electrostatic field and parallel vector potential at the last timestep written out by the subroutine nc_final_fields. Their arguments are (k_y, k_x, θ, ri) as seen in the ncdump command, but in gs2 and IDL routine, they are accessed as (ri, θ, k_x, k_y) .

Variables md and nd are valid number of modes after truncation by 2/3rule in k_y and k_x direction, respectively. malias, and nalias are the full number of modes, or the number of grid points in y and x directions. Making the connection to gs2 variables, we obtain the following correspondence:

$$md = naky, \quad nd = ntheta0$$
 (85)

malias = ny, nalias = nx,
$$(86)$$

where the left hand sides are the variables in gs2.pro and the rhs are those in gs2. malias and nalias were defined in gs2.pro as

$$malias = 3 * md, nalias = 3 * nd/2 + 1,$$
 (87)

but I changed them to the followings:

 $malias = (md - 1) * 3 + 1, \tag{88}$

$$malias = malias + (malias \mod 2)$$
 (89)

$$nalias = (nd - 1)/2 * 3 + 1 \tag{90}$$

$$nalias = nalias + (nalias \mod 2)$$
 (91)

which are the exact inverse of the aliasing expressions found in gs2 when nx and ny are exact powers of 2 and larger than 2.

Here is a list of changes I made on gs2.pro.

- 1. recovered exact number of grid points as explained above
- 2. added one more grid in both x and y directions to take care of the periodicity
- 3. added phi, apar, and apar_1 in the 'Field Plot' section. They are the 2D real-space values of each quantity at the final step. So, if the run stops in the linear phase, they give the eigenfunctions. They only work with the axes of 'x,y', and apar_1 is obtained by eliminating the equilibrium component out of apar. The value of θ is controlled by 'Active l' slidebar in the right.
- 4. added phi, apar, and apar_1 in the 'Line Plot' section. They are the 1D real-space values of the above. The plane you slice in y is determined by 'Active M' slidebar.

10 Bug report

- 1. Tar ball src.08.17.04.tgz is broken. First make distclean before compilation: fixed.
- 2. At DEPENDENCIES section in Makefile, ingen.o must also depend on text_options.o, constants.o, and theta_grid.o: fixed
- 3. At MODULE DECLARATIONS section in Makefile, LINKS should include file_utils.f90: fixed. Also at DIRECTIVES section, there are multiple declaration of file_utils.o (maybe case dependent?), but is the second line needed in the first declaration? If needed, file_utils.f90 may also need to be added in dependency.