
gs2 notes

T. Tatsuno

March 22, 2006

1 Open Questions

List of my questions.

1. I think add_nonlinear_terms only evaluates Poisson bracket and puts
it in g1. Where is it added? → It’s added at set_source in dist_

fn.f90 by Euler or 2nd order Adams-Bashforth scheme, but why is the
factor 0.5 multiplied? → Is this factor 0.5 because set_source < get_

source_term < invert_rhs < timeadv is called twice in advance_

implicit?

2. What does istep_last do in add_nl? → It’s for the check if time step
has advanced from the last call.

3. Can load_kx_apar in nonlinear_terms.f90 be simplified if vpa(*,2,*) =
−vpa(*,1,*)? So as load_ky_apar.

4. Is it okay to use the same timeadv for the first and the second implicit
time stepping in advance_implicit? I’m assuming it uses the scheme
described in Kotschenreuther paper Sec.3.5.

5. At invert_rhs_1 in dist_fn.f90, the ‘homogeneous’ solution g1 is
obtained only by multiplying r. Is g1 at step n supposed to be zero?
→ yes they are. This is what the ‘homogeneous’ solution mean in
Kotschenreuther paper.

6. At invert_rhs_1 in dist_fn.f90, is it okay to use r and ainv defined
for v̂‖ > 0 in the calculation of gnew for vpar < 0?

1



7. In get_source_term, there appear a lot of cross terms like vpac ∗
[J0(ig) + J0(ig+1)] or something like that. Is this what is meant as a
numerical scheme?

8. On the one hand, density, temperature, and their gradients are basi-
cally field quantities. And on the other hand, spec%dens, spec%temp,
spec%fprim and spec%tprim are just real values. How can I under-
stand it? Are they just normalization factors and don’t evolve in time?

9. In get_source_term?, when you use finite bakdif, do you not need to
implement it in the source term either?

10. Do we need to convert total into 1d array work in integrate_species

before allreduce? Can we use reshape function rather than multiple
do-loops?

11. Can I remove some of the logical variable alloc by using if (.not.allocated(...)) ...?

12. For nesuper = 1, xsup and wsup can be made correct by setting them
unity

13. Why gbdrift and gbdrift0? Which is ∇B-drift? Same with cvdrift

and cvdrift0?

14. What are gds2, gds21, and gds22?

15. Can we include an equilibrium flow in distribution function?

16. How is g obtained from a given A‖ profile in recon10.in?

17. How is perturbation in A‖ given in recon10a.in?

18. Is collision operator fixed? Can I have the fixed one?

19. At init_kt_grids in kt_grids.f90, is it ok to make tnorm optional
even if norm_option = bd? Or add error output in case it is missed?

20. Is idfit_eq in theta_grid_knobs working?

21. Does alloc at allocate_arrays in fields.f90 need save attribute?
Same with first of init_integrations in le_grids.f90.

22. In dist_fn.f90, adiabatic_option_zero is not used.

23. Do variables need save attribute when defined in the common area
(i.e., before contains statement) of each modules?

2



24. Do fapar, faperp, and fphi need default values at read_parameters
in run_parameters.f90?

25. pitch angle grid: xx(1:ng2) and wx(1:ng2) are the Legendre zeros
and weights rescaled to (1, 0) and in descending order.

al(1:ng2) =
1

Bmax

(1− xx(1:ng2)2) (1)

wl(θ, λ) = 2wx(λ)

√√√√B(θ)

Bmax

1
Bmax

− al(λ)
1

B(θ)
− al(λ)

= 2wx(λ)
B(θ)

Bmax

√
1− λBmax

1− λB(θ)
(2)

On the other hand, the integral we need is

I = B(θ)

∫ 1/Bmax

0

1√
1− λB(θ)

dλ

= B(θ)

∫ 1/Bmax

0

√
1− λBmax

1− λB(θ)

1√
1− λBmax

dλ

=
2B(θ)

Bmax

∫ 1

0

√
1− λ(X)Bmax

1− λ(X)B(θ)
dX (3)

We are having a weird factor with square root. Is this a quadrature? I
mean, if there is additional weight, that has to be removed. Otherwise
we have to use a proper function for that weight!? I don’t think this can
give exponential convergence even if the factor does not have branch
point.

I wonder if Chebyshev is better by defining X =
√

λB(θ) or anything
like that. Does Candy & Waltz use different scheme?

Maybe this is okay. We need to integrate something like

I ′ = B(θ)

∫ 1/Bmax

0

f(λ)√
1− λB(θ)

dλ (4)

Then, by regarding the weight unity and taking the factor as part of the
integrand by muitiplying it with f(λ(X)), we may use Legendre zeros

3



and weights. Since weights are always multiplied with the integrand,
the code takes care of the multiplication of the factor by multiplying it
onto weights instead of f(λ(X)).

Then, the next question is: Does the branch point matters at x = 1?

26. In root finding at setegrid in le_grids.f90, why cheking every other
nodes instead of adjacent ones?

27. When is xgrid_v used at all?

28. There are g*_lo%ulim_proc and g*_lo%ulim_alloc. The definition
of ulim_alloc is

ulim_alloc = max(llim_proc,ulim_proc)

Isn’t it always same with ulim_proc? Or, can blocksize be zero? If
so, shouldn’t we use ulim_alloc any time? What is the difference?

29. Does the argument of Bessel function only include ky at init_bessel
in dist_fn.f90? Why? Don’t need kx since it has to be k⊥v⊥/Ω?

30. What’s the meaning of the value upar0 = 0.436 in recon10a.in?

31. logical variable list (in gs2.f90) determines the run type: if the com-
mand line argument is ‘?*.list’ (judged at run_type in file_utils.f90)
then list = .true.: make multiple runs changing parameters?

32. What are lavg and tavg doing at time_message in gs2_reinit.f90?

33. Why is cbuff necessary? In parent process, run_name still points
arun_name, but in child processes, it points cbuff. cbuff = arun_name

only at parent process. arun_name is undefined at child processes.

34. What is θ used for ntheta and nperiod? In toroidal or poloidal direc-
tion?

35. What is alpmhd? It is neither defined at read_parameters in theta_grid_params

nor in gs2_template.in file.

36. Is itor working? What is it for then?

37. Are ∇B and curvature drift same in most cases except when ∇p is
large?

38. What’s the difference between theta and theta0? Why is theta0 2D?

39. What are pure and elemental functions?

4



2 Closed Questions

1. akx_out is the wave number used in most of the output including the
one in gs2_io.f90, but it is defined in kt_grids.mod as

akx_out = akx/
√

2 (5)

which I guess corresponds to the conversion of the wave number in
BD normalization to MTK one. On the other hand, in the output file
recon10?.out.nc, we see that kx(1) = 1/6, which has to be the value
of akx! Why? → You are missing the multiplication of

√
2 on wave

numbers at get_grids in kt_grids.mod. This converts all akx in the
code into MTK normalization.

2. Why ostride and odist are both zero at transform_x5d in gs2_

transforms.f90? → since xf_ and xb_fft do in-place transforms.

3. What is ainv in dist_fn.f90? → inverse of the coefficient of fn+1
i+1 in

Kotschenreuther paper (14).

4. In the beginning of fields_explicit.f90, it says NOT UP TO DATE
... DO NOT USE. Should we maintain it? → maybe not.

Some notes.

1. theta_grid.f90 consists of six modules of theta_grid, theta_grid_params,
theta_grid_gridgen, theta_grid_salpha, theta_grid_eik, and theta_grid_file.

2. DOS mode input file doesn’t work with ingen and probably with gs2,
either.

3 Modifications I want to make

1. Can get_unused_unit in file_utils.f90 be simplified by opened

specifier?

2. Can I use spread for defining theta0 at range_get_grids in kt_grids.f90?

3. Can I replace multiple do loops by forall? → don’t do that. forall
statement is still inefficient.

4. At efitin in eeq.f90, inquire existance of eqfile

5



5. Is it difficult to use different energy grids for different species? We
may not be able to make simulation with vastly different temperatures
between species.

4 Variables

By default, I don’t mean the value in the input file, but that used in the
actual calculation.

scalars
name type default value description
nx int 0 number of grid points in x real space
ny int 0 number of grid points in y real space
ntheta0 int 2*((nx-1)/3)+1 number of valid modes in x
naky int (ny-1)/3+1 half number of valid modes in y
ntgrid int half number of grid point in z (finite difference)?
negrid int 10 total number of energy grid
ngauss int 5 half number of λ grid points
ng2 int ngauss ∗ 2
nlambda int ng2 + nbset (eps > 0)

ng2 (otherwise)
number of grid points in λ = µ/E

y0 real 2.0 box length in y by multiple of 2π
ly real 2π ∗ y0 box length in y
rtwist real 1.0 ly/lx aspect ratio
lmax int nlambda− 1 (eps > 0.)

nlambda (otherwise)
maximum value of λ?

shat real ŝ =
r

q

dq

dr
igomega int 0 ig to output in 2d

1d arrays
name type dim description

akx real ntheta0 k̂xM wavenumbers in x (reversed in the middle)

aky real naky k̂yM wavenumbers in y in MTK normalization
al real nlambda pitch-angle grid λ = µ/E (weights: wl in 2d)

6



2d arrays
name type dim description
theta0 real ntheta0× naky akx(i)/(aky(2:)*shat), theta0(:,1) = 0. ??
akr real ntg × ntheta0 akx(it)*sqrt(abs(gds22(:)))/abs(shat) ??
e real negrid× nspec energy grid
w real negrid× nspec energy weights
wl real ntg × nlambda pitch-angle weights
vperp2 real ntg × glo v̌2

⊥
anon real negrid× nspec equals unity unless slowing_down_species
aj0 real ntg × glo Bessel function J0

aj1 real ntg × glo Bessel function J1

where ntg = -ntgrid:ntgrid.

3d arrays
name type dim description
vpa real ntg × 2× glo v̌‖ or zero (for non-passing zone)
phi complex ntg × ntheta0× naky electrostatic field
apar complex ntg × ntheta0× naky A‖
aperp complex ntg × ntheta0× naky A⊥
g complex ntg × 2× glo distribution function

5 Equations found

When one chooses s-alpha equilibrium option, toroidal magnetic field profile
bmag is defined at salpha_get_grids as

bmag = 1− ε cos θ − α1 cos(3θ) for model_option = ’alpha1’ (6)

bmag = 1− ε cos θ for model_option = ’b2’ (7)

bmag =
1

1 + ε cos θ
otherwise (8)

where ε(= eps) = r/R, r and R denote minor radius of interest and major
radius, respectively. Thus θ is found to be poloidal angle.

init_vpar
For untrapped particle

vpa(ig) = σ
√

E(1− λB(ig)) (9)

vpac(ig) =
1

2
[vpa(ig) + vpa(ig+1)] (10)

(11)

7



and for nonpassing zone

vpa = 0 (12)

vpac = σ (13)

where σ = ±1 denotes the coordinate for the sign of v‖. And then vpar is
defined by

vpar(ig) =
Z√
mT

tunits
∆t

2∆θ

1

2
[gradpar(ig)+gradpar(ig+1)]∗vpac(ig)

(14)
where gradpar(:) = kp in salpha option.

init_wdrift
For ky = 0,

wdrift =
kxE

shat

delt

2

(
vcurv0[1− λB(θ)] +

1

2
v∇B0λB(θ)

)
(15)

= ωd ∗ delt? (16)

and for ky 6= 0,

wdrift =

[
(vcurv + θ0vcurv0)(1− λB(θ)) + (v∇B + θ0v∇B0)

1

2
λB(θ)

]
E∗delt∗wunits

(17)
where from adjust_time_norm in run_parameters.f90,

wunits =

{
1 (wstar_units = .true.)

ky/2 (wstar_units = .false.)
(18)

tunits =

{
2/ky (wstar_units = .true. & ky 6= 0)

1 (wstar_units = .false.)
(19)

funits =

{
1 (wstar_units = .true.)

tnorm (wstar_units = .false.)
(20)

woutunits =

{
ky/

√
2 (wstar_units = .true.)

tnorm (wstar_units = .false.)
(21)

init_wstar

wstar = delt ∗ wunits ∗ [fprim + tprim ∗ (E − 1.5)] (22)

init_bessel

kperp2 =





gds22

(shat)2
k2

x (ky = 0)

(gds2 + 2θ0gds21 + θ2
0gds22) k2

y (ky 6= 0)
(23)

8



with the argument

arg =

√
mT

|Z|

√
kperp2

λE

B
, (24)

we define the Bessel functions

aj0 = J0(arg), aj1 = J1(arg) (25)

with a formula taken from Abramovitz & Stegun (page 369, 9.4). By the
way, in recon10a.in,

gds2 = 1, gds21 = −(shat)2θ, gds22 = (shat)2, (26)

and

θ0 =

{ kx

kyshat
(ky 6= 0)

0 (ky = 0)
. (27)

Therefore,

kperp2 =

{
k2

x (ky = 0)
k2

x + k2
y − 2kxkyθ ∗ shat (ky 6= 0)

(28)

shat is small ( = 10−6), but kperp2 is not exactly k2
⊥ for θ 6= 0. Is this okay?

init_invert_rhs

9



ainv(ntg, glo) =
1

1 + bd + (1− fexp)T
Z
[iwd(1 + bd) + 2vp]

(29)

∼
[
1 + (1− fexp)∆t

(
iωd +

2v̂‖
∆θ

)]−1

(30)

= (coeff. of fn+1
i+1 in the lhs)−1 = (D4 plus bd factor)−1

(31)

r(ntg, glo) =
1− bd + (1− fexp)T

Z
[iwd(1− bd)− 2vp]

1 + bd + (1− fexp)T
Z
[iwd(1 + bd) + 2vp]

(32)

=

[
1 + (1− fexp)∆t

(
iωd −

2v̂‖
∆θ

)]
∗ ainv (33)

= (coeff. of fn+1
i in the lhs) ∗ ainv = (D3 plus bd factor) ∗ ainv

(34)

a(ntg, glo) = 1 + bd + fexp
T

Z
[−iwd(1 + bd)− 2vp] (35)

= 1− fexp∆t

(
iωd +

2

∆θ
v̂‖

)
?(haven’t checked ωd factor)

(36)

= D2 (coeff. of fn+1
i term) plus bd factor (37)

b(ntg, glo) = 1− bd + fexp
T

Z
[−iwd(1− bd) + 2vp] (38)

= 1− fexp∆t

(
iωd − 2

∆θ
v̂‖

)
?(haven’t checked ωd factor)

(39)

= D1 (coeff. of fn
i term) plus bd factor (40)

where wd = wdrift ( = 0 in reconnection) and vp = vpar(ntg, 1, glo). Note
that they are all defined for positive v‖.

fexp is a complex number. What’s the meaning of the imaginary part?
The meaning of the real part of fexp and bd ( = bakdif) is explained later
(in get_source_term?).

init_fieldeq

10



gamtot =
∑

s

nZ2
s

Ts

∫ ∫
(1− J2

0 ) ∗ anon dλ dE + kperp2 ∗ poisfac (41)

gamtot1 =
∑

s

nZs

∫ ∫
2v2
⊥J0J1 ∗ anon dλ dE (42)

gamtot2 =
∑

s

nT

∫ ∫
2v4
⊥J2

1 ∗ anon dλ dE (43)

Of course these integrations are done with proper weights and Jacobians
described elsewhere.

invert_rhs
In dist_fn.f90. Add source term

sourcefac =





s0 exp[(−iω0 + γ0)t] (t > t0)
1

2

(
1− cos

πt

t0

)
exp[(−iω0 + γ0)t] (t ≤ t0)

, (44)

where s0 (source0), ω0 (omega0), γ0 (gamma0), and t0 (t0) are given param-
eters specified in source_knobs.

get_source_term
Writing fφ = fphi, fexp = fexp ( = 1− δ in Kotschenreuther paper)

phigavg = fφJ0

[
fexpφ

n + (1− fexp)φ
n+1

]
+ fA⊥

T

Z
v2
⊥J1

[
fexpA

n
⊥ + (1− fexp)A

n+1
⊥

]

(45)

apargavg = fA‖J0

[
fexpA

n
‖ + (1− fexp)A

n+1
‖

]
(46)

ufac = 2 ∗ uprim +

√
π

4
E3/2 ∗ uprim2 (47)

The following is for reconnection problem:

source(ig) = −2vpar(ig)φm − Z√
mT

vpac(ig)
J0(ig) + J0(ig + 1)

2
A‖m

(48)

11



where

φm = phigavg(ig + 1)− phigavg(ig) ∼ ∆θ
∂(J0φ)

∂θ
(49)

A‖m = An+1
‖ (ig + 1) + An+1

‖ (ig)− An
‖ (ig + 1)− An

‖ (ig)

∼ 2∆t
∂A‖
∂t

(50)

phigavg = J0(ig)
[
fexpφ

n(ig) + (1− fexp)φ
n+1(ig)

]
(51)

vpar(ig) =
Z√
mT

∆t

∆θ
kp ∗ v̌‖(ig) + v̌‖(ig + 1)

2
∼ Ẑ

T̂

∆t

∆θ
v̂‖ (52)

vpac(ig) =
v̌‖(ig) + v̌‖(ig + 1)

2
(53)

Thus,

source(ig) ∼ − Ẑ

T̂
v̂‖

[
∂(J0φ)

∂θ
+ J0

∂A‖
∂t

]
(2∆t) (54)

where φ and A‖ are evaluated from both time steps of n and n + 1. This is
the expression you get at set_source. Is the sign of the first term in [. . . ]
okay??

Moreover, if nonlin = .true., then add nonlinear terms

source = (54) +
1

2

delt

tnorm
× (nonlinear terms), (55)

in Euler scheme at the first time step and in second order Adams-Bashforth
scheme for the rest. tnorm =

√
2 in reconnection runs, and delt is multiplied

by tnorm in init_run_parameters. So the factor delt/tnorm corresponds
to the real delt specified in the input file. The ∆t ( = delt) in the linear
terms is

√
2 times larger than that. The precise form of the nonlinear terms

is described in add_nl.

Next, we go back to get_source_term and around the place where Do

matrix multiplications... For σ = 1

b(ig, iglo) ∗ g(ig, 1, iglo) + a(ig, iglo) ∗ g(ig + 1, 1, iglo) (56)

is added to source(ig), which corresponds to the gn terms arising from the
finite difference form of the lhs:

∂f

∂t
+ iωdf + v̂‖

∂f

∂θ
∼ 1

2∆t

[
(fn+1

i + fn+1
i+1 )− (fn

i + fn
i+1)

]

+
iωd

2

[
(1− fexp)(f

n+1
i + fn+1

i+1 ) + fexp(f
n
i + fn

i+1)
]

+
v̂‖
∆θ

[
(1− fexp)(f

n+1
i+1 − fn+1

i ) + fexp(f
n
i+1 − fn

i )
]

(57)

12



where ωd = 0 in the reconnection problem. For σ = −1, the sign change of
v̂‖ is taken care of by multiplying a and b oppositely on g(ig) and g(ig + 1),
respectively, because the definition of a and b uses vpar(ntg, 1, glo) which
is the positive part of v̂‖.

Okay, let’s think about bakdif now. It is introduced in order to make
v̂‖∂θf term an upwind difference scheme. As is described in (57), everything is
evaluated at grid point i+1/2 in θ. Instead of changing the finite differencing
of ∂θf , we shift the grid point for other terms to be evaluated a little bit
forward. Then, the scheme is going to be upwind finite difference.

Let’s work on the terms appearing in (57), and we write β = bakdif for
simplicity. Any term evaluated at i + 1/2 is expressed as follows:

fi+1/2 =
1

2
(fi+1 + fi). (58)

By shifting it forward, we may write it as

fi+(1+β)/2 =
1

2
[(1 + β)fi+1 + (1− β)fi], (59)

where 0 ≤ β ≤ 1 and β = 0 corresponds to second order centered difference
scheme (may β be larger than unity?).

Thus, for the terms in (57), they are finite differenced as
(

∂f

∂t
+ iωdf

)

i+(1+β)/2

+

(
v̂‖

∂f

∂θ

)

i+1/2

∼ 1

2

[
(1 + β)

fn+1
i+1 − fn

i+1

∆t
+ (1− β)

fn+1
i − fn

i

∆t

]

+
iωd

2

{
(1− fexp)

[
(1 + β)fn+1

i+1 + (1− β)fn+1
i

]
+ fexp

[
(1 + β)fn

i+1 + (1− β)fn
i

] }

+
v̂‖
∆θ

[
(1− fexp)(f

n+1
i+1 − fn+1

i ) + fexp(f
n
i+1 − fn

i )
]

=
1

2∆t

[
1

ainv
fn+1

i+1 +
r

ainv
fn+1

i − afn
i+1 − bfn

i

]
.

(60)

Here comes the question. When you use finite bakdif, do you not need
to implement it in the source term either?

invert_rhs_1
Is it okay to use r and ainv defined for v̂‖ > 0 in the calculation of gnew for
vpar < 0?

13



getan
This is in dist_fn.f90.

antot =
∑

s

nZ

∫ ∫
J0 ∗ gnew dλ dE (61)

antota =
∑

s

2 ∗ beta ∗ nZ

√
T

m

∫ ∫
J0v̌‖ ∗ gnew dλ dE

=
∑

s

2 ∗ beta ∗ nZ

∫ ∫
J0v̂‖ ∗ gnew dλ dE (62)

antotp =
∑

s

nT

∫ ∫
J1v̌

2
⊥ ∗ gnew dλ dE (63)

getfieldeq1

add_nl
If the time step (istep) is advanced from the last call (istep_last),

g2 = g1 (64)

g1 = ikx

[
J0

(
fφφ− v̂‖fA‖A

n
‖
)

+
2m

Z
J1v̂

2
⊥fA⊥An

⊥

]
(65)

ba = F (g1) (66)

g1 =
Z

T

[
iky

(
J0fφφ +

2m

Z
J1v̂

2
⊥fA⊥An

⊥

)]
+ ikyg (67)

gb = F (g1) (68)

bracket = ba ∗ gb ∗ kxfac (69)

g1 = iky

[
J0

(
fφφ− v̂‖fA‖A

n
‖
)

+
2m

Z
J1v̂

2
⊥fA⊥An

⊥

]
(70)

ba = F (g1) (71)

g1 =
Z

T

[
ikx

(
J0fφφ +

2m

Z
J1v̂

2
⊥fA⊥An

⊥

) ]
+ ikxg (72)

gb = F (g1) (73)

bracket = bracket− ba ∗ gb ∗ kxfac (74)

g1 = F (bracket) (75)

where kxfac = 1 when equilibrium_option = s-alpha. Why do (Z/T ) [...]
terms appear in (67) and (72)?

14



6 Normalization

Energy is normalized by

Ěs =
Es

msv2
ts/2

(76)

where

vts =

{ √
2Ts/ms norm_option = with_root_2√
Ts/ms norm_option = no_root_2

. (77)

Note that energy normalization is done in terms of the thermal velocity for
each specy.

In the following, we first write everything in the definition of vt with
√

2,
and in case which is different without

√
2, it’s shown in the bracket. The

energy in relation to temperature

Ěs =
Es

Ts

(
Ěs =

2Es

Ts

)
(78)

and in the velocity
Ěs = v̌2

s (79)

Is the energy variable normalized with respect to the temperature for each
species, while k⊥ is normalized in terms of a representative vt∗ for which we
choose T = 1? Then, the argument of the Bessel function can be understood:

args =

√
m̂sT̂s

Zs

k̂⊥v̌⊥s

B̂

=

√
m̂sT̂s

Zs

k⊥ρ∗v⊥s/vts

B/B∗

=

√
msTs

qs

q∗√
m∗T∗

k⊥v⊥s

B/B∗

vt∗
Ω∗

√
ms

2Ts

=
k⊥v⊥s

Ωs

(80)

On the other hand, they cancel in the pitch-angle variable λ

λ̌ =
v̌2
⊥

v̌2B̂
=

v̂2
⊥

v̂2B̂
= λ̂ (81)

Here is a formula to transfer v̂ to v̌:

v̂s = v̌s

√
T̂s

m̂s

(82)

15



7 collisions

Rough sketch is given in Greg’s and David’s memo. Here is shown the ex-
pression of the function Hee appearing in Greg’s note.

Define the function

Hee(E) =
1√
πE

e−E +

(
1− 1

2E

)
erf

(√
E

)
(83)

with this erf(·) part given in an awful polynomial including 16-th power in
gs2. I don’t know the source of that formula.

For electrons,

vnew =
vnewk

v̌3
(zeff + Hee) ∗ 0.5 ∗ tunits (84)

where vnewk and zeff are the input variables in species_parameters and
parameters namelists, respectively. zeff term represents electron-ion col-
lision under an approximation of replacing ion distribution function by a
delta-function valid when vth,i ¿ vth,e. Hee term represents the like-particle
collisions with a Maxwellian background. For ions, zeff term is omitted.
When const_v flag in collisions_knobs is on, the whole vnew is evaluated
for the thermal velocity (v̌ = 1) for both electrons and ions. There is another
array vnew4 in collisions.f90, but it is unused.

8 Ascii output files

Everything turned on by the flag write_ascii.

(runname).moments Controlled by write_final_moments and each col-
umn means

θ ky kx ntot dens u‖ T‖ T⊥ θ − θ0 is

middle 5 normalized by phi0

(runname).mom2 Controlled by write_final_moments and each column
means

θ ky kx ntot dens u‖ T‖ T⊥ θ − θ0 is

16



(runname).fields Controlled by write_final_fields and each column
means

θ ky kx φr φi A‖,r A‖,i A⊥,r A⊥,i θ − θ0 |φ|

9 Netcdf file and gs2.pro

phi2 in (runname).out is a volume average.

phi0, apar0, aperp0 written out in the subroutine nc_loop are all 3D
arrays including time at the slice with ig = igomega (θ = igomega ∗ 2π)
where igomega is an input variable in gs2_diagnostics_knobs namelist.

phi and apar are 3D arrays of the electrostatic field and parallel vector
potential at the last timestep written out by the subroutine nc_final_-

fields. Their arguments are (ky, kx, θ, ri) as seen in the ncdump command,
but in gs2 and IDL routine, they are accessed as (ri, θ, kx, ky).

Variables md and nd are valid number of modes after truncation by 2/3-
rule in ky and kx direction, respectively. malias, and nalias are the full
number of modes, or the number of grid points in y and x directions. Making
the connection to gs2 variables, we obtain the following correspondence:

md = naky, nd = ntheta0 (85)

malias = ny, nalias = nx, (86)

where the left hand sides are the variables in gs2.pro and the rhs are those
in gs2. malias and nalias were defined in gs2.pro as

malias = 3 ∗ md, nalias = 3 ∗ nd/2 + 1, (87)

but I changed them to the followings:

malias = (md− 1) ∗ 3 + 1, (88)

malias = malias + (malias mod 2) (89)

nalias = (nd− 1)/2 ∗ 3 + 1 (90)

nalias = nalias + (nalias mod 2) (91)

which are the exact inverse of the aliasing expressions found in gs2 when nx

and ny are exact powers of 2 and larger than 2.

Here is a list of changes I made on gs2.pro.

17



1. recovered exact number of grid points as explained above

2. added one more grid in both x and y directions to take care of the
periodicity

3. added phi, apar, and apar_1 in the ‘Field Plot’ section. They are
the 2D real-space values of each quantity at the final step. So, if the
run stops in the linear phase, they give the eigenfunctions. They only
work with the axes of ’x,y’, and apar_1 is obtained by eliminating the
equilibrium component out of apar. The value of θ is controlled by
‘Active l’ slidebar in the right.

4. added phi, apar, and apar_1 in the ‘Line Plot’ section. They are the
1D real-space values of the above. The plane you slice in y is determined
by ‘Active M’ slidebar.

10 Bug report

1. Tar ball src.08.17.04.tgz is broken. First make distclean before
compilation: fixed.

2. At DEPENDENCIES section in Makefile, ingen.o must also depend on
text_options.o, constants.o, and theta_grid.o: fixed

3. At MODULE DECLARATIONS section in Makefile, LINKS should include
file_utils.f90: fixed. Also at DIRECTIVES section, there are multi-
ple declaration of file_utils.o (maybe case dependent?), but is the
second line needed in the first declaration? If needed, file_utils.f90
may also need to be added in dependency.

18


