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1 Notes on Toroidal Flow Shear in GK
1.1 CMR Notes on including Toroidal Flow Shear in GK

In the absence of toroidal flow, the linear electrostatic gyrokinetic equation is derived for the perturbed
distribution function for an isotropic equilibrium:
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where n(z) and T'(x) represent the equilibrium temperature and density on a given flux surface labelled
by x. The perturbed distribution function at next order is given by:
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where the nonadiabatic part of the perturbed distribution function g is obtained from the gyrokinetic
equation:
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where Z = kp, U is a mean flow and the velocity of a particle guiding centre can be written as:
v=U +vb+ vq.

Now we shall assume that the equilibrium distribution function has subsonic sheared toroidal rotation
that can be represented in the equilibrium distribution function by:
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where z is a flux surface label proportional to poloidal flux. Now if we assume low Mach number:
RQ(z) ~ O (evy)

where £ < 1 so that the impact of toroidal rotation on the plasma equilibrium (via Coriolis and centrifugal
forces) can be neglected, and transform to the frame that co-rotates toroidally with the surface labelled
by z¢, denoting = — x¢ by = we can write the equilibrium distribution function as:
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where / denotes a derivative with respect to poloidal flux d/dz. In order to resolve equilibrium flow
shear stabilisaton, we require that the equilibrium flow shear is of the order of mode growth rate: ie
R%B,QY ~ O(v/L). This corresponds to a gradient scale length for the toroidal frequency Lo ~ O(eL).
The change in toroidal flow velocity AV, across a flux-tube domain of radial width Ar ~ O(p) is therefore
given by AV, ~ O(vp/L), so that the toroidal flow remains subsonic across the domain. Thus the second
term in the bracket above is a higher order p/L correction to the equilibrium distribution function.
Nevertheless when equilibrium flow shear is comparable with growth rates, the radial derivative of this
second term is comparable to the leading order equilibrium gradients that appear on the RHS of the
gyrokinetic equation, and so the derivative of this term should be included there.



The change in electrostatic potential A® across the narrow flux-tube associated with the sheared flow
is given by
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and that the change in electrostatic potential across the tube is a small fraction of the particle kinetic
energy.

The terms in (2) where (9/0t + U.V) acts on perturbation quantities can be represented as time
derivatives with a time dependent eikonal, and this will be discussed shortly.

The second term on the RHS of equation (2) includes a radial derivative of the toroidal rotation
frequency, which contributes to leading order the following additional term T'g:

so that
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Given that the variation in the equilibrium electrostatic potential across the flux-tube domain satisfies

qA¢/T ~ O ( (5 + )) throughout the flux-tube domain, we can approximate for vy using:
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where E = "2 ® and = 2 B , and we have dropped the higher order contribution RQ’z. The additional

term Tk can be expressed as:
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The gyrokinetic equation with flow shear becomes:
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where fo = n(z) (ﬁ(m)) e~mv*/2T(2) does not include the toroidal equilibrium fow.

GS2 presently includes the time dependent eikonal, but does not include the term Tx that should
appear on the RHS of the gyrokinetic equation if the equilibrium distribution function is self-consistent
with the sheared equilibrium toroidal flow.

1.2 GKE with Subsonic Flow Shear from Artun and Tang

The nonlinear gyrokinetic equation with up to sonic toroidal flows is given in equation (56) of Artun
and Tang, Physics of Plasmas 1, 2682 (1994). Dropping magnetic perturbations and nonlinear terms for
brevity, A&Ts’ equation (56) can be written as:
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where the velocity of a particle guiding centre v = V + ¢, with V representing the mean toroidal flow
V = RQ(¢Y)ey, and with ¢ = ¢b + cp. The guiding centre drifts are contained in cp:
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which includes the E x B drift, the V B drift, the magnetic curvature drift, and the Coriolis and centrifugal
drifts (that arise in the sheared co-rotating frame adopted for this calculation) respectively. The leading
order distribution function is given by F' = F(e, u, R} ), where the particle energy ¢, = cﬁ/2 +c2 /2 -
V?2/2 4+ q¢o/m and magnetic moment po = ¢ /2B.

Here we proceed to simplify (6) to give a gyrokinetic equation with subsonic sheared flows. We
assume that V' = RQ(¢) ~ O(ev;), while allowing a locally steep radial gradient in the toroidal flow
frequency so that OV /0z = R?B,Qey = O(v/L) (ie Lo ~ O(cL). We restrict V' further to consider
only the situation with only sheared toroidal flow by writing V' = R xey, where in the local equilibrium
x =1 — 1y and the toroidal flow is zero at x = 0. With these assumptions we have that:
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With these orderings, to leading order in € we can drop the Coriolis and centrifugal drifts:
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Therefore equation (6) reduces to:
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We write the equilibrium distribution function as F' = A(1))e~"</T(®)  where the velocity space variable
corresponding to energy e is given by:
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Now in our chosen ordering the centrifugal potential energy V2 ~ O(c2v?), and its radial derivative
m(V?) ~ O(eT"). Thus to leading order ¢ = cﬁ/Q +¢2 /2+ qdo () /m, and all flow terms can be dropped
from the second term on the RHS, which is proportional to Vg F' and is the usual linear drive term in
gyrokinetics. (This term corresponds to the second term on the RHS of equation (5)). The final term in
equation (7) reduces to
mcHRQ' B¢
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and corresponds to Tgr in equation (4). We therefore find that applying these flow orderings to Artun
and Tang’s formulation of gyrokinetics with toroidal flows, confirms the validity of the simpler approach
of section 1.1 that yielded equation (5).
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1.3 Implementation of the Flow Shear Terms in GS2

Firstly we consider the time dependent eikonal arising from all terms in equation (2) where U.V acts on
perturbation quantities A:

UVA = RQImed).Vfl where x is the radial variable in GS2
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where we have obtained kG52 from line 3 of page 5 in [1], ¢)x = 1/(Boa?), a is the plasma half diameter
in the equatorial midplane and By is the reference magnetic field strength. To proceed in GS2 we require
the definition of the GS2 radial coordinate x, which for general toroidal geometry is given in equation (6)

of [2]:
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where p,, is the flux label, having the value p,o at the centre of the box. The definition of x allows us to
write:
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where the factor pmfv{Ef /a? can be cancelled from the gyrokinetic equation as it appears in all terms. GS2
uses coordinates z, y and 6 in a stationary LAB frame, with x and y perpendicular to the magnetic field
(z is a radial flux surface label and y = ¢ — g(z) (0 — 6p) labels the field line), and 6 is a poloidal angle
that labels distance along the field direction. GS2 represents all perturbations in the following form:
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allows the U.V terms to be absorbed directly into the eikonal, evolving the radial wavenumber of all
perturbations in time according to k() = k;(0) + I'k,t. Inside GS2 the evolving eikonal is computed
using:

kG52 (t) = KS%(0) + GEXB k52652

where t©52 is GS2’s internally normalised time (correponding to the timestep variable code_dt) which is
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The parameter GEXB is obtained from physical quantities using (10) to give:
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where  is a real toroidal angular frequency in rads—1, p, is the GS2 normalised flux surface label (minor
radius, square root toroidal flux, or poloidal flux), L**f = a is the reference equilibrium length scale
equal to the minor radius (or half midplane diameter), and vi*f is the reference thermal velocity. In the
ballooning representation used for linear GS2 simulations, k, = ko + 5k, (6 — 6o) (NB there is subtlety
to be resolved here as § has a specific meaning that may differ from GS2’s choice which may depend on
the choice of GS2 radial variable), and the eikonal time dependence can be modelled with:

deSQ

dfg awosT GEXB

dtes? T TGSz T g

(13)



dQ
dby dom

E = — dq’ from (12)
dpn
dby dQ)
-0 _ _== 14
~ dq (14)

The flow shearing rate parameter vg (see Kinsey, Waltz and Candy, Phys Plasmas 12, 062302, (2005))
is defined:
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Before considering the additional source term that arises with flow shear on the RHS of the gyrokinetic
equation, it is helpful to understand how GS2 handles the usual linear drive terms Lp (eg that arising
from the density gradient):
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The term in square brackets is the normalised source term that provides the linear drive for instability:
e.g. a density gradient adds (1/n)dn/dp,, and enters GS2 through the normalised input parameter fprim.
We follow the same normalisation procedure for the additional source term Ty that arises with flow shear.
Working from the final term in equation (7):
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The additional source S that must be included in GS2 is the term in square brackets:
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where T; and m; denote the temperature and mass of species j, normalised to the reference temperature
and mass respectively.

1.4 Prescription for Ty used by Other Codes

My understanding is that other codes (GYRO and GKW) define their equilibrium distribution function
as:
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with the additional flux function equilibrium parameter u which contains mean flux parallel component
of the equilibrium flow on the flux surface. This formulation of the equilibrium distribution function
is of some concern for several reasons. Firstly it represents a sheared parallel flow in the equilibrium
distribution function, which is not toroidal, and does not contribute to sheared perpendicular flow.
Secondly the mean flow for this equilibrium is not divergence free. Thirdly, while modelling toroidal flow
shear as a sheared parallel flow may be reasonable at large aspect ratio, at low aspect ratio the parallel
direction is most different from the toroidal direction at the outboard midplane (ie in the bad curvature
region). (Perhaps if the codes also include further terms for the equilibrium distribution function that
include the sheared flow these concerns may be allayed.) The parameter u is set to zero, and u]l is used
to capture the contribution from the source term Tk. u1 is chosen to cancel the poloidal component of
equilibrium rotation arising from the equilibrium radial electric field and to give a resulting total flow in
the toroidal direction. Including this parallel flow term can have a significant impact on the effectiveness
of sheared flow stabilisation, as additional instability can be generated at large sheared parallel flows. It
is therefore important that the term is implemented correctly. It is not entirely clear how this term has
been implemented in other codes, but they can include many more terms from the equilibrium source
than are in GS2 to include the neoclassical corrections to the leading order distribution function. The
GS2 source on the right hand side includes only the set of linear terms in the perturbations acting on
the leading order equilibrium Maxwellian distribution, while GKW can include all of the drifts acting on
the Maxwellian. It is possible that what is appropriate for f¢ in one code may not be appropriate for
another.

1.4.1 The Parallel Flow

A sketch to motivate the need for a parallel flow if the flow arising strictly from Vgo has been fully
implemented is given below.
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A parallel flow arises to cancel the poloidal component of Vg:
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= setting Uy = 5 cancels the theta component of the net flow
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The net flow now lies in the toroidal direction:
(VE + VII) Vo = @

and the mean flow on a flux surface corresponds to rigid toroidal rotation with frequency Q = ®’, which

is manifestly divergence free. It is to be noted that the magnitude of U} = %/ is not an exact flux
function.
(Diamagnetic flows are species dependent fluid flows that arise from circulating orbits, and are given
by:
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These flows generate current but no mass flow.)

2 GS2 (November 2007)

This outlines CMR’s understanding of how GS2 implements equilibrium flow shear. The gyrokinetic
equation for the time evolution of the nonadiabatic perturbed distribution function g is given by:
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where G denotes the usual gyrokinetic operator for the advance of g without equilibrium flow. With
perpendicular flow shear only, v = v'ze,. Numerically GS2 proceeds to solve for g by splitting the time
advance into steps. Here we need only consider the time advance step due to the inclusion of flow shear,

which looks like:
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GS2 uses coordinates x, y and 6 in a stationary LAB frame, with x and y perpendicular to the magnetic
field, and 6 along the field direction. z is radial and y lies in the magnetic surface. GS2 represents all
perturbations in the following form:
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The flow shear advance step for g:
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and for infinitesimal At this can be written as:
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Therefore the flow shear time advance step should yield:
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which yields in terms of the Fourier components:
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where kg shige = kyv'At, ky. With a continuous grid in k, and infinitesimal At this would describe exactly
equilibrium flow shear acting alone.

GS2 has a discrete grid in k, with grid spacing Ak,. The evolution of k; ¢ is monitored in time,
and when k, ghige exceeds Ak, (or is it Ak, /2) GS2 advects all perturbations in k, using equation 21
to improve the GS2 approximation of the perturbations in the LAB frame. The perturbation can be
computed at any point in time in the fixed GS2 LAB frame using;:
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but k, snife 1S not included in the G time advance step for the reason that including it in this step would
be prohibitively expensive computationally.
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