
Equilibrium Flow Shear Implementation in GS2

C M Roach

April 2009

1 Notes on Toroidal Flow Shear in GK

1.1 CMR Notes on including Toroidal Flow Shear in GK

In the absence of toroidal flow, the linear electrostatic gyrokinetic equation is derived for the perturbed
distribution function for an isotropic equilibrium:

f1
0 = n(x)

(
m

2πT (x)

)1.5

e−mv
2/2T (x)

where n(x) and T (x) represent the equilibrium temperature and density on a given flux surface labelled
by x. The perturbed distribution function at next order is given by:

f1
1 =

qΦ1

m

∂f1
0

∂E
+ g(r, v‖, v⊥)e−ik.ρ. (1)

where the nonadiabatic part of the perturbed distribution function g is obtained from the gyrokinetic
equation: (

∂
∂t + U .∇

)
g +

(
v‖b + vd

)
.∇g = − qJ0(Z)

m
∂f1

0
∂E

(
∂
∂t + U .∇

)
Φ1 + J0(Z)

B ∇Φ1 × b.∇f1
0 (2)

where Z = kρ, U is a mean flow and the velocity of a particle guiding centre can be written as:

v = U + v‖b + vd.

Now we shall assume that the equilibrium distribution function has subsonic sheared toroidal rotation
that can be represented in the equilibrium distribution function by:

f1
0 = n(x)

(
m

2πT (x)

)1.5

e−m(v−RΩ(x)eφ)2
/2T (x) = n(x)

(
m

2πT (x)

)1.5

e−mv
2/2T (x)+mvφRΩ(x)/T (x)

where x is a flux surface label proportional to poloidal flux. Now if we assume low Mach number:

RΩ(x) ∼ O (εvt)

where ε� 1 so that the impact of toroidal rotation on the plasma equilibrium (via Coriolis and centrifugal
forces) can be neglected, and transform to the frame that co-rotates toroidally with the surface labelled
by x0, denoting x− x0 by x we can write the equilibrium distribution function as:

⇒ f1
0 = n(x0)

(
m

2πT (x0)

)1.5

e−mv
2/2T (x0)

(
1 +

mvφRΩ′(x0)x
T (x0)

)
(3)

where ′ denotes a derivative with respect to poloidal flux d/dx. In order to resolve equilibrium flow
shear stabilisaton, we require that the equilibrium flow shear is of the order of mode growth rate: ie
R2BpΩ′ ∼ O(vt/L). This corresponds to a gradient scale length for the toroidal frequency LΩ ∼ O(εL).
The change in toroidal flow velocity ∆Vφ across a flux-tube domain of radial width ∆r ∼ O(ρ) is therefore
given by ∆Vφ ∼ O(vtρ/L), so that the toroidal flow remains subsonic across the domain. Thus the second
term in the bracket above is a higher order ρ/L correction to the equilibrium distribution function.
Nevertheless when equilibrium flow shear is comparable with growth rates, the radial derivative of this
second term is comparable to the leading order equilibrium gradients that appear on the RHS of the
gyrokinetic equation, and so the derivative of this term should be included there.
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The change in electrostatic potential ∆Φ across the narrow flux-tube associated with the sheared flow
is given by

∆Φ = Φ′RBpρ+ Φ′′R2B2
pρ

2 ∼ O
(
ε+

ρ

L

) T
q

Now

Φ′ = Ω ∼ O(ε
vt
L

) and Φ′′ = Ω′ = O

(
1

R2Bp

vt
L

)
so that

q∆Φ
T

= O

(
ρ

ρp

(
ε+

ρ

L

))
and that the change in electrostatic potential across the tube is a small fraction of the particle kinetic
energy.

The terms in (2) where (∂/∂t + U .∇) acts on perturbation quantities can be represented as time
derivatives with a time dependent eikonal, and this will be discussed shortly.

The second term on the RHS of equation (2) includes a radial derivative of the toroidal rotation
frequency, which contributes to leading order the following additional term TR:

TR =
mvφRΩ′

T
f1
0

J0(Z)
B

∇Φ1 × b.∇x

Given that the variation in the equilibrium electrostatic potential across the flux-tube domain satisfies
q∆φ/T ∼ O

(
ρ
ρp

(
ε+ ρ

L

))
throughout the flux-tube domain, we can approximate for vφ using:

vφ = v‖
Bφ
B

=

√
2 (E − µB)

m

Bφ
B

where E = mv2

2 and µ = mv2⊥
2B , and we have dropped the higher order contribution RΩ′x. The additional

term TR can be expressed as:

TR =
mv‖RΩ′

T

Bφ
B
f1
0

J0(Z)
B

∇Φ1 × b.∇x (4)

The gyrokinetic equation with flow shear becomes:

(
∂
∂t + U .∇

)
g +

(
v‖b + vd

)
.∇g = −qJ0(Z)

m

∂f0
∂E

(
∂

∂t
+ U .∇

)
Φ1 +

J0(Z)
B

∇Φ1 × b.∇f0

+
mv‖RΩ′

T

Bφ
B
f0
J0(Z)
B

∇Φ1 × b.∇x (5)

where f0 = n(x)
(

m
2πT (x)

)1.5

e−mv
2/2T (x) does not include the toroidal equilibrium flow.

GS2 presently includes the time dependent eikonal, but does not include the term TR that should
appear on the RHS of the gyrokinetic equation if the equilibrium distribution function is self-consistent
with the sheared equilibrium toroidal flow.

1.2 GKE with Subsonic Flow Shear from Artun and Tang

The nonlinear gyrokinetic equation with up to sonic toroidal flows is given in equation (56) of Artun
and Tang, Physics of Plasmas 1, 2682 (1994). Dropping magnetic perturbations and nonlinear terms for
brevity, A&Ts’ equation (56) can be written as:„

∂

∂t
+

`
c‖b + V + cD

´
.∇R

«
δg = −qJ0

m

∂F

∂ε

„
∂

∂t
+ V .∇R

«
Φ̃− qJ0

mΩ
b×∇RΦ̃.∇RF

+
qJ0

mΩ

∂F

∂ε
b×∇RΦ̃.

ˆ`
c‖b + V

´
.∇V + ∇V .

`
c‖b + V

´˜
(6)

where the velocity of a particle guiding centre v = V + c, with V representing the mean toroidal flow
V = RΩ(ψ)eφ, and with c = c‖b + cD. The guiding centre drifts are contained in cD:

cD =
b

Ω
×

(
q

m
∇φ0 +

c2⊥
2

∇logB + c2‖b.∇b + 2c‖b.∇V + V .∇V

)
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which includes the E×B drift, the ∇B drift, the magnetic curvature drift, and the Coriolis and centrifugal
drifts (that arise in the sheared co-rotating frame adopted for this calculation) respectively. The leading
order distribution function is given by F = F (ε, µ,R⊥), where the particle energy ε0 = c2‖/2 + c2⊥/2 −
V 2/2 + qφ0/m and magnetic moment µ0 = c2⊥/2B.

Here we proceed to simplify (6) to give a gyrokinetic equation with subsonic sheared flows. We
assume that V = RΩ(ψ) ∼ O(εvt), while allowing a locally steep radial gradient in the toroidal flow
frequency so that ∂V /∂x = R2BpΩ′eφ = O(vt/L) (ie LΩ ∼ O(εL). We restrict V further to consider
only the situation with only sheared toroidal flow by writing V = RΩ′xeφ, where in the local equilibrium
x = ψ − ψ0 and the toroidal flow is zero at x = 0. With these assumptions we have that:

b.∇V = Ω(ψ)b.∇(Reφ) = Ω(ψ)
(
−Bφ
B

eR +
Bp.∇θ

B

∂R

∂θ
eφ

)
∼ O

(εvt
L

)
V .∇V = −RΩ2eR ∼ O

(
ε2v2

t

L

)
∇V .b = ∇(RΩ)eφ.b +RΩ����:0∇eφ.b ∼ Bφ

B
RΩ′∇ψ ∼ O

(vt
L

)
∇V .V = RΩ∇RΩ +R2Ω2

�����:0
∇eφ.eφ ∼ R2ΩΩ′∇ψ ∼ O

(
εv2
t

L

)

With these orderings, to leading order in ε we can drop the Coriolis and centrifugal drifts:

cD = cD0 =
b

Ω
×

(
q

m
∇φ0 +

c2⊥
2

∇logB + c2‖b.∇b

)
and we find that: [(

c‖b + V
)
.∇V + ∇V .

(
c‖b + V

)]
= c‖∇V .b = c‖RΩ′Bφ

B
∇ψ

Therefore equation (6) reduces to:((
∂

∂t
+ V .∇R

)
+

(
c‖b + cD0

)
.∇R

)
δg = −qJ0

m

∂F

∂ε

(
∂

∂t
+ V .∇R

)
Φ̃− qJ0

mΩ
b×∇RΦ̃.∇RF

+
qJ0

mΩ
∂F

∂ε
b×∇RΦ̃.

[
c‖RΩ′Bφ

B
∇ψ

]
(7)

We write the equilibrium distribution function as F = A(ψ)e−mε/T (ψ), where the velocity space variable
corresponding to energy ε is given by:

ε =
c2‖

2
+
c2⊥
2
− V 2

2
+
qφ0(ψ)
m

Now in our chosen ordering the centrifugal potential energy V 2 ∼ O(ε2v2
t ), and its radial derivative

m(V 2)′ ∼ O(εT ′). Thus to leading order ε = c2‖/2+ c2⊥/2+ qφ0(ψ)/m, and all flow terms can be dropped
from the second term on the RHS, which is proportional to ∇RF and is the usual linear drive term in
gyrokinetics. (This term corresponds to the second term on the RHS of equation (5)). The final term in
equation (7) reduces to

−
mc‖RΩ′

T

Bφ
B
F
J0

B
b×∇RΦ̃.∇ψ

and corresponds to TR in equation (4). We therefore find that applying these flow orderings to Artun
and Tang’s formulation of gyrokinetics with toroidal flows, confirms the validity of the simpler approach
of section 1.1 that yielded equation (5).

1.3 Implementation of the Flow Shear Terms in GS2

Firstly we consider the time dependent eikonal arising from all terms in equation (2) where U .∇ acts on
perturbation quantities A:

U .∇A = RΩxxeφ.∇Ã where x is the radial variable in GS2

= in0ÃRΩxxeφ.∇α since Ã = Ã(θ)ein0(α+qθ0)
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= in0ÃΩxx since eφ.∇α =
1
R

= i

(
n0ρ

ref

a

dρn
dψN

)
ÃGS2 dψN

dρn
Ωxx

⇒ U .∇A = ikGS2
y ÃGS2 dψN

dρn
Ωxx using kGS2

y =
n0ρ

ref

a

dρn
dψN

(8)

where we have obtained kGS2
y from line 3 of page 5 in [1], ψN = ψ/(B0a

2), a is the plasma half diameter
in the equatorial midplane and B0 is the reference magnetic field strength. To proceed in GS2 we require
the definition of the GS2 radial coordinate x, which for general toroidal geometry is given in equation (6)
of [2]:

x = (ρn − ρn0)
q0
ρn0

dψN
dρn

(
a

ρref

)
dx

dρn
=

q0
ρn0

dψN
dρn

a

ρref
(9)

where ρn is the flux label, having the value ρn0 at the centre of the box. The definition of x allows us to
write:

U .∇Ã = ikGS2
y ÃGS2 dψN

dρn

dΩ
dρn

dρn
dx

x

= ikGS2
y ÃGS2

(
ρn0

q0

dΩGS2

dρn

) (
ρrefvref

t

a2

)
x using (9) and Ω = ΩGS2 v

ref
t

a

⇒ U .∇Ã(
ρrefvref

t /a2
) = ikGS2

y ÃGS2

(
ρn0

q0

dΩGS2

dρn

)
x (10)

where the factor ρrefvref
t /a2 can be cancelled from the gyrokinetic equation as it appears in all terms. GS2

uses coordinates x, y and θ in a stationary LAB frame, with x and y perpendicular to the magnetic field
(x is a radial flux surface label and y = φ − q(x) (θ − θ0) labels the field line), and θ is a poloidal angle
that labels distance along the field direction. GS2 represents all perturbations in the following form:

Ã(x, y, θ, t) =
∑

Akx,ky (θ, t)eikxx+ikyy

Noting that:

e−iΓkytx
∂

∂t

∑
Akx,ky (θ, t)eikxx+iΓkytx+ikyy =

(
∂

∂t
+ iΓkyx

)
A (11)

allows the U .∇ terms to be absorbed directly into the eikonal, evolving the radial wavenumber of all
perturbations in time according to kx(t) = kx(0) + Γkyt. Inside GS2 the evolving eikonal is computed
using:

kGS2
x (t) = kGS2

x (0) + GEXB kGS2
y tGS2

where tGS2 is GS2’s internally normalised time (correponding to the timestep variable code dt) which is
ALWAYS given by

tGS2 =

√
2T ref

mref t

a
.

The parameter GEXB is obtained from physical quantities using (10) to give:

GEXB =
ρ

q

dΩGS2

dρn
=
ρ

q

dΩ
dρn

amref

2T ref
(12)

where Ω is a real toroidal angular frequency in rads−1, ρn is the GS2 normalised flux surface label (minor
radius, square root toroidal flux, or poloidal flux), Lref = a is the reference equilibrium length scale
equal to the minor radius (or half midplane diameter), and vref

t is the reference thermal velocity. In the
ballooning representation used for linear GS2 simulations, kx = kx0 + ŝky(θ − θ0) (NB there is subtlety
to be resolved here as ŝ has a specific meaning that may differ from GS2’s choice which may depend on
the choice of GS2 radial variable), and the eikonal time dependence can be modelled with:

dθ0
dtGS2

= −
dkGS2

x

dtGS2

ŝkGS2
y

= −GEXB
ŝ

(13)
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dθ0
dt

= −
dΩ
dρn

dq
dρn

from (12)

⇒ dθ0
dt

= −dΩ
dq

(14)

The flow shearing rate parameter γE (see Kinsey, Waltz and Candy, Phys Plasmas 12, 062302, (2005))
is defined:

γE =
r

q

∂(qvE/r)
∂r

=
ρφn
q

∂Ω
∂ρφn

as vE =
RBp
B

Φ′ ∼ r

q
Ω(ψ) and where r = ρφn (15)

⇒ γGS2
E =

(
ρφn
ρn

dρn
dρφn

)
ρn
q

dΩGS2

dρn
=

(
ρφn
ρn

dρn
dρφn

)
GEXB (16)

Before considering the additional source term that arises with flow shear on the RHS of the gyrokinetic
equation, it is helpful to understand how GS2 handles the usual linear drive terms LD (eg that arising
from the density gradient):

LD = − qJ0

mΩ
b×∇Φ̃.∇F

= −in0
qJ0

mΩ
∂F

∂ψ
Φ̃∇α×∇ψ.b since φ̃ = φ̃(θ)ein0α

= −in0J0
∂F

∂ψ
Φ̃ since ∇α×∇ψ.b = B

= −in0ρ
ref

Lref

T ref

qref
J0Φ̃GS2 ∂F

∂ψ
using φ̃ =

ρref

Lref

T ref φ̃GS2

qref

= −in0ρ
ref

Lref

dρn
dψn

T ref

qrefBrefLref2
J0Φ̃GS2 ∂F

∂ρn
using

dF

dψ
=

1
BrefLref2

dρn
dψn

dF

dρn

= −in0ρ
ref

Lref

dρn
dψn

ρrefvref
t

Lref2
J0Φ̃GS2 ∂F

∂ρn
using

T ref

qrefBref
= ρrefvref

t

= i

(
n0ρ

ref

Lref

dρn
dψn

)
J0Φ̃GS2

[
− 1
F

∂F

∂ρn

](
ρrefvref

t

Lref2

)
F

⇒ LD = ikGS2
y J0Φ̃GS2

[
− 1
F

∂F

∂ρn

](
ρrefvref

t

Lref2

)
F where kGS2

y =
n0ρ

ref

Lref

dρn
dψn

(17)

The term in square brackets is the normalised source term that provides the linear drive for instability:
e.g. a density gradient adds (1/n)dn/dρn, and enters GS2 through the normalised input parameter fprim.
We follow the same normalisation procedure for the additional source term TR that arises with flow shear.
Working from the final term in equation (7):

TR =
qJ0

mΩ
∂F

∂ε
b×∇Φ̃.

[
c‖RΩ′Bφ

B
∇ψ

]
= in0

qJ0

mΩ
∂F

∂ε
c‖RΩ′Bφ

B
Φ̃∇α×∇ψ.b since φ̃ = φ̃(θ)ein0α

= in0J0
∂F

∂ε
c‖RΩ′Bφ

B
Φ̃ since ∇α×∇ψ.b = B

= i
n0ρ

ref

Lref

T ref

qref
J0Φ̃GS2 ∂F

∂ε
c‖RΩ′Bφ

B
using φ̃ =

ρref

Lref

T ref φ̃GS2

qref

= i
n0ρ

ref

Lref

dρn
dψn

T ref

qrefBrefLref2
J0Φ̃GS2 ∂F

∂ε
c‖R

Bφ
B

dΩ
dρn

using
dΩ
dψ

=
1

BrefLref2

dρn
dψn

dΩ
dρn

= i
n0ρ

ref

Lref

dρn
dψn

ρrefvref
t

Lref2
J0Φ̃GS2 ∂F

∂ε
c‖R

Bφ
B

dΩ
dρn

using
T ref

qrefBref
= ρrefvref

t

= i

(
n0ρ

ref

Lref

dρn
dψn

)
J0Φ̃GS2

[
1
F

∂F

∂ε
c‖R

Bφ
B

dΩ
dρn

](
ρrefvref

t

Lref2

)
F

⇒ TR = ikGS2
y J0Φ̃GS2

[−mc‖RBφ
TB

dΩ
dρn

](
ρrefvref

t

Lref2

)
F (18)
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The additional source S that must be included in GS2 is the term in square brackets:

S = −
mc‖RBφ

TB

dΩ
dρn

= −
2c‖RBφ
v2
tjB

dΩ
dρn

where vtj =

√
2TjT ref

mjmref

= −2
c‖

vtj

qRBφ
ρn0B

1
vtj

GEXB
√

2T ref

mref L
ref

since
dΩ
dρn

=
q

ρn0
GEXB

√
2T ref

mref

Lref
from (12)

⇒ S = −2
c‖

vtj

qRGS2Bφ
ρn0B

√
mj

Tj
GEXB (19)

where Tj and mj denote the temperature and mass of species j, normalised to the reference temperature
and mass respectively.

1.4 Prescription for TR used by Other Codes

My understanding is that other codes (GYRO and GKW) define their equilibrium distribution function
as:

f1
0 = n(x)

(
m

2πT (x)

)1.5

e−m(v−u‖(x)b)2
/2T (x) (20)

with the additional flux function equilibrium parameter u‖ which contains mean flux parallel component
of the equilibrium flow on the flux surface. This formulation of the equilibrium distribution function
is of some concern for several reasons. Firstly it represents a sheared parallel flow in the equilibrium
distribution function, which is not toroidal, and does not contribute to sheared perpendicular flow.
Secondly the mean flow for this equilibrium is not divergence free. Thirdly, while modelling toroidal flow
shear as a sheared parallel flow may be reasonable at large aspect ratio, at low aspect ratio the parallel
direction is most different from the toroidal direction at the outboard midplane (ie in the bad curvature
region). (Perhaps if the codes also include further terms for the equilibrium distribution function that
include the sheared flow these concerns may be allayed.) The parameter u‖ is set to zero, and u′‖ is used
to capture the contribution from the source term TR. u′‖ is chosen to cancel the poloidal component of
equilibrium rotation arising from the equilibrium radial electric field and to give a resulting total flow in
the toroidal direction. Including this parallel flow term can have a significant impact on the effectiveness
of sheared flow stabilisation, as additional instability can be generated at large sheared parallel flows. It
is therefore important that the term is implemented correctly. It is not entirely clear how this term has
been implemented in other codes, but they can include many more terms from the equilibrium source
than are in GS2 to include the neoclassical corrections to the leading order distribution function. The
GS2 source on the right hand side includes only the set of linear terms in the perturbations acting on
the leading order equilibrium Maxwellian distribution, while GKW can include all of the drifts acting on
the Maxwellian. It is possible that what is appropriate for f1

0 in one code may not be appropriate for
another.

1.4.1 The Parallel Flow

A sketch to motivate the need for a parallel flow if the flow arising strictly from VE0 has been fully
implemented is given below.

VE =
B ×∇Φ
B2

where B = ∇ψ ×∇φ+ I∇φ

⇒ VE .∇θ =
IΦ′

B2
∇φ×∇ψ.∇θ

⇒ VE .∇φ = Φ′ (∇ψ ×∇φ)×∇ψ

B2
.∇φ = Φ′ |∇ψ|2|∇φ|2

B2
. = Φ′B

2
p

B2
.

A parallel flow arises to cancel the poloidal component of VE :

V‖ =
Us‖B

B
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⇒ V‖.∇θ =
Us‖

B
∇ψ ×∇φ.∇θ

⇒ setting U‖ =
IΦ′

B
cancels the theta component of the net flow

⇒ V‖.∇φ =
U‖I

R2B
. =

B2
φΦ

′

B2

The net flow now lies in the toroidal direction:(
VE + V‖

)
.∇φ = Φ′

and the mean flow on a flux surface corresponds to rigid toroidal rotation with frequency Ω = Φ′, which
is manifestly divergence free. It is to be noted that the magnitude of U‖ = IΦ′

B is not an exact flux
function.

(Diamagnetic flows are species dependent fluid flows that arise from circulating orbits, and are given
by:

V s
D =

B ×∇ps
nsqsB2

⇒ V s
D.∇θ =

Ip′s
nsqsB2

∇φ×∇ψ.∇θ

⇒ V s
D.∇φ =

p′s
nsqs

B2
p

B2
.

These flows generate current but no mass flow.)

2 GS2 (November 2007)

This outlines CMR’s understanding of how GS2 implements equilibrium flow shear. The gyrokinetic
equation for the time evolution of the nonadiabatic perturbed distribution function g is given by:

∂g

∂t
= Ĝg + v.∇g

where Ĝ denotes the usual gyrokinetic operator for the advance of g without equilibrium flow. With
perpendicular flow shear only, v = v′xey. Numerically GS2 proceeds to solve for g by splitting the time
advance into steps. Here we need only consider the time advance step due to the inclusion of flow shear,
which looks like:

∆g
∆t

= v′x
∂g

∂y

GS2 uses coordinates x, y and θ in a stationary LAB frame, with x and y perpendicular to the magnetic
field, and θ along the field direction. x is radial and y lies in the magnetic surface. GS2 represents all
perturbations in the following form:

A(x, y, θ, t) =
∑

Akx,ky (θ, t)eikxx+ikyy

The flow shear advance step for g:

∆g =
∑
kx,ky

ikyv
′x∆tgkx,ky (θ, t)eikxx+ikyy

and for infinitesimal ∆t this can be written as:

∆g =
∑
kx,ky

(
eikyv

′x∆t − 1
)
gkx,ky (θ, t)eikxx+ikyy

Therefore the flow shear time advance step should yield:

gt+∆t =
∑
kx,ky

gkx,ky (θ, t)ei(kx+kyv
′∆t)x+ikyy
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which yields in terms of the Fourier components:

gkx,ky (θ, t+ ∆t) = gkx−kx shift,ky (θ, t) (21)

where kx shift = kyv
′∆t, ky. With a continuous grid in kx and infinitesimal ∆t this would describe exactly

equilibrium flow shear acting alone.
GS2 has a discrete grid in kx with grid spacing ∆kx. The evolution of kx shift is monitored in time,

and when kx shift exceeds ∆kx (or is it ∆kx/2) GS2 advects all perturbations in kx using equation 21
to improve the GS2 approximation of the perturbations in the LAB frame. The perturbation can be
computed at any point in time in the fixed GS2 LAB frame using:

A(x, y, θ, t) =
∑

Akx,ky (θ, t)ei(kx+kx shift)x+ikyy

but kx shift is not included in the Ĝ time advance step for the reason that including it in this step would
be prohibitively expensive computationally.
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